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a b s t r a c t 

We propose a novel face representation model, called the polynomial contrast binary patterns (PCBP), 

based on the polynomial filters, for robust face recognition. It is assumed that the discrete array of pixel 

values comes about by sampling an underlying smooth surface in an image. The proposed method effi- 

ciently estimates the underlying local surface information, which is approximately represented as linear 

projection coefficients of the pixels in a local patch. The decomposition using polynomial filters can cap- 

ture rich image information at multiple orientations and frequency bands. This guarantees its robustness 

to illumination and expression variations. The weighting scheme embeds different discriminative pow- 

ers of each filter response image. We also propose to carry out a subsequent Fisher linear Discriminant 

(FLD) on each decomposed image for dimension reduction of features. Our extensive experiments on the 

public FERET and LFW databases demonstrate that the non-weighted Polynomial contrast binary patterns 

performs better than most of methods and the weighting scheme further improves the recognition rates. 

WPCBP + FLD(CD) and WPCBP + FLD(HI) can achieve much competitive or even better recognition perfor- 

mance compared with the state-of-the-art face recognition methods. 

© 2018 Published by Elsevier B.V. 
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. Introduction 

Automatic face recognition has been extensively studied over

he past two decades due to the broad prospect in real-world

pplications such as surveillance, biometrics, human computer

nteraction. Face representation is the most key stage in a face

ecognition system, because face images captured in real world

nvironments are largely affected by intra-personal variations,

uch as expression, illumination, pose, noise, occlusion, aging and

o on. An effective face representation should be able to extract

iscriminative features to make face images more separable.

owever, the large variations occurring in face images reduce the

ntra-personal similarity and increase the inter-personal similarity,

hich make face representation phase one of the key challenges

or excellent face recognition performance. 

A variety of face representation methods focus on seeking effec-

ive and efficient feature to enhance face recognition performance

1,2] . Basically, feature extraction methods can be mainly divided

nto two categories: subspace based holistic features and local ap-

earance features. Among the holistic features, principle compo-

ent analysis (PCA) [3] and Fisher linear discriminant (FLD) [4] are
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he two most well-known linear subspace learning methods in the

eld of pattern recognition tasks. PCA provides an optimal linear

ransformation in sense of the least mean square reconstruction

rror. FLD attempts to seek a linear transformation by maximizing

he ratio of the variance between the classes to the variance within

he class. Various manifold learning methods such as ISOMAP [5] ,

LE [6] , LPP [7] , NPE [8] etc, can also be cast into this category.

urthermore, the kernel methods [9] are introduced to handle the

onlinear structure of data. Holistic features performs well under

ontrolled environments but they share some common shortcom-

ngs. For instance, they usually need a representative training set,

nd the recognition performance may degrade due to the partial

ariations occurring under uncontrolled environments. 

In recent years, using deep neural networks to learn effec-

ive feature representations has become popular in face recogni-

ion. Through training on large-scale face images, DeepID [10] and

eepFace [11] could learn discriminative deep face representation.

hen DeepID2 [12] and DeepID2 + [13] as improved methods of

eepID, were proposed and effectively promoted the accuracy on

ace recognition. Although the methods based on deep leaning

ave nearly achieved the best performance, the huge amount of

raining data restricts their application in many practical cases. 

As opposed to holistic features, local appearance features pro-

ide powerful robustness to partial variations. Local binary pat-

erns (LBP) [14] and Gabor wavelets [15] are two representative

https://doi.org/10.1016/j.neucom.2018.09.056
http://www.ScienceDirect.com
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.09.056&domain=pdf
mailto:li.weifeng@sz.tsinghua.edu.cn
https://doi.org/10.1016/j.neucom.2018.09.056


2 Z. Xu et al. / Neurocomputing 355 (2019) 1–12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o  

e  

2  

c  

a  

p  

W  

c  

e  

t  

a  

a  

W  

P  

e  

r  

f

 

d  

t  

t  

r  

s

2

 

s  

e  

i  

w  

A  

r  

t  

a  

i  

fi  

t  

w  

T  

p  

t

 

s  

c

s  

w  

r  

{  

o  

d  

a  

o  

t  

l  

p  

r  

T  

c  

c

2

 

f  
methods in face recognition applications. It has been proven that

LBP is a discriminant and effective feature for face recognition.

LBP can capture the local structure information via the differ-

ence between the neighbors and central pixel. The binary encoding

scheme of LBP ensures its invariant to any monotonic changes of

intensity values in a local region. The spatial concatenating of lo-

cal statistical histograms provides more robustness to partial varia-

tions of local features. In the last few years, the face representation

based on binary encoding and spatial histogram arouses increasing

interest and inspires rich researches into LBP variants. Three-Patch

LBP (TPLBP) and Four-Patch LBP (FPLBP) [16] are proposed to cap-

ture the local patch similarities instead of pixel similarities. Local

ternary pattern (LTP) [17] adopts a ternary instead of binary en-

coding rule to alleviate the sensitivity to the near-uniform image

regions. 

Gabor wavelets resemble the two-dimensional receptive fields

of the mammalian cortical smile cells, which enable Gabor

wavelets to capture the local structure corresponding to specific

spatial frequency (scale), spatial locality and selective orientation.

Gabor feature and its variants have been demonstrated to be ro-

bust to noise, illumination and expression changes. Recently, some

researchers attempted to apply local features on stable pixel at-

tributes (e.g, Gabor magnitude responses and phase responses)

rather than the pixel intensity to obtain more sufficient and stable

representations. There are lots of work focusing on the combina-

tions between Gabor attributes and LBP. Zhang et al. [18] proposed

the local Gabor binary patterns (LGBP) by applying LBP on Gabor

magnitude responses. Zhang et al. [19] developed the local Ga-

bor XOR patterns (LGXP) by performing local XOR patterns (LXP),

which is a variant of LBP, on Gabor phase responses. Xie et al.

[20] presented a face representation by fusing LGBP and LGXP,

which has shown impressive performance. Chai et al. [21] takes

advantage of different kinds of ordinal measures on magnitude,

phase, real, and imaginary components of Gabor images. Besides

Gabor wavelets, researchers attempted to explore more efficient

and effective attributes. Vu et al. [22] proposed to extend the pixel-

based self-similarity in LBP to patch-based self-similarity, in which

the intensity values of a central pixel is replaced by the accu-

mulated gradient magnitudes across different directions. Recently,

there have been some works on learning discriminant attributes

rather than pre-defined ones. Lei et al. [23] proposed to learn a

set of image filters using the LDA criterion. Lu et al. [24] also at-

tempted to learn image filters by maximizing the variance of all

binary codes. 

Taken together, it is vital to seek stable and powerful attributes

which can capture well local structure information of a face im-

age for face representation. In [25] , Robert M. Haralick proposed

the facet model which exploits surface fitting concept [26] and ap-

plied for step edge detection. The facet model assumes that there

exists an underlying gray tone intensity surface and the digital

image should be regarded as an observed noisy sampling of the

surface. In some sense, numeric digital image operations should

be explained in terms of their actions on the underlying surface.

Therefore, there must then involve fitting the underlying surface

corresponding to the sampled data before operating. 

In this paper, we attempt to represent the underlying surface

as linear combinations of the two-dimensional discrete Chebyshev

polynomials and thus to estimate the surface fitting coefficients

by minimizing the reconstruction error between the underlying

surface and the observed image. The surface fitting coefficients

can reflect the local surface structure information, and meanwhile

provide stable and powerful attributes for further patterns ex-

traction. Therefore, we propose a novel feature extraction method

called polynomial contrast binary patterns (PCBP) based on a sur-

face fitting concept via polynomial approximation. PCBP first cap-

tures the local structure information corresponding to different
rientations and spatial frequencies by the linear surface fitting co-

fficients, which are used to represent pixel values with a set of

-D Chebyshev polynomials. Here, the linear representation coeffi-

ients at a pixel are derived by convolving the local patch centered

t the pixel with a series of filters, which proves to be just an ap-

roximate normalization of an evaluation of the 2-D polynomials.

e name the derived Chebyshev polynomial filters (CPF), which

an decompose an image into a series of responses with differ-

nt and compact structure information. Then we extract local pat-

ern which captures background intensity contrast information on

ll polynomial filter responses, and the spatial histogram model is

lso used to form a joint face representation. We further propose

eighted PCBP (WPCBP) to enhance the discriminative power of

CBP by assigning different polynomial filter responses with un-

qual weights, which are learned based on Fisher separation crite-

ion. Finally, we also exploit the Fisher linear discriminant analysis

or discriminative feature selection. 

The rest of our paper is organized as follows: Section 2 intro-

uces in detail the polynomial filters. Section 3 introduces the fea-

ure extraction algorithm of the polynomial contrast binary pat-

erns (PCBP). Section 4 proposes the scheme of the PCBP based face

ecognition. Section 5 presents and discusses our experimental re-

ults and finally Section 6 concludes the paper. 

. Polynomial filters 

Based on facet model, we attempt to exploit the underlying

urface structure information as the attributes for local patterns

xtraction. As for discrete image analysis, the underlying surface

s a real-valued function s defined on the domain of the image,

hich is a bounded and connected subset of the real plane R 

2 .

s we know, it is not possible to recover the true function s di-

ectly from the observed noisy sample. However, it can be assumed

hat the underlying function s takes some kind of parametric form,

nd these parameters are kind of representations of the underly-

ng function s , i.e, smooth surface. To fit the function s , one must

rst assume some parametric form of s , and then exploit the in-

ensity values of the sampled image to estimate the parameters,

hich reflect the local surface structure information of the image.

herefore, we can consider these parameters as more stable and

owerful attributes, and then perform some operations based on

he estimated values of the parameters. 

Assuming that in each neighborhood of the image the function

 takes the parametric form of a polynomial in the row and column

oordinates, then we can have 

 (x, y ) = k 1 + k 2 x + k 3 y + k 4 x 
2 + k 5 xy + k 6 y 

2 + · · · , (1)

hich shows that the underlying surface function is easy to

epresent as linear combinations of the simple polynomials

 1 , x, y, x 2 , xy, y 2 , . . . } . These polynomials are not orthogonal to each

ther, and may lead to redundancy. In this paper, we exploit the

iscrete two-dimensional chebyshev polynomials as the basis set

s in [25] . The Chebyshev polynomials are unique and orthog-

nal to each other, thus providing compactness for surface fit-

ing. Specifically, the underlying surface function s can be the

inear combination of the discrete two-dimensional chebyshev

olynomials, and the linear combination coefficients would rep-

esent the local surface structure information of the image.

herefore, we should first construct the discrete two-dimensional

hebyshev polynomials and then compute the linear combination

oefficients via the image and polynomials. 

.1. Discrete orthogonal polynomial construction 

To construct the 2-dimensional discrete orthogonal polynomials

or image processing, we first construct the 1-dimensional discrete
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Fig. 1. Two-dimensional squarely symmetric neighborhood index sets for different size. (a) 3 × 3 patch with {−1 , 0 , 1 } × {−1 , 0 , 1 } ; (a) 5 × 5 patch with {−2 , −1 , 0 , 1 , 2 } ×
{−2 , −1 , 0 , 1 , 2 } ; (a) 7 × 7 patch with {−3 , −2 , −1 , 0 , 1 , 2 , 3 } × {−3 , −2 , −1 , 0 , 1 , 2 , 3 } . 
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rthogonal polynomials { P i ( x )}, where P i ( x ) denotes the i th order 1-

imensional polynomial. Let the discrete index set � be symmetric

round the zero (e.g, {−2 , −1 , 0 , 1 , 2 } ). First define P 0 (x ) = 1 , x ∈ �.

hen P i ( x ) is assumed to take the form 

 i (x ) = a 0 + a 1 x + · · · + a i −1 x 
i −1 + x i . (2)

uppose that the first n polynomials P 0 (x ) , . . . , P n −1 (x ) have been

efined, then P n ( x ) must be orthogonal to P 0 (x ) , . . . , P n −1 (x ) . There-

ore, we will have n linear equations 
 

 ∈ �
P i (x ) P n (x ) = 0 , i = 0 , . . . , n − 1 . (3)

ubstituting Eq. (2) into Eq. (3) , we will have 

 

 

 

 

 

 

μ0 μ1 μ2 · · · μn 

μ1 μ2 μ3 · · · μn +1 

. . . 
. . . 

. . . 
. . . 

. . . 
μn −2 μn −1 μn · · · μ2 ∗n −2 

μn −1 μn μn +1 · · · μ2 ∗n −1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

a 0 
a 1 
. . . 

a n −2 

a n −1 

1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 0 , (4) 

here 

n = 

∑ 

x ∈ �
x n , (5) 

s the summation of the n th order index set. Therefore, by com-

uting all the μn and solving Eq. (4) , we will obtain the desired

epresentation coefficients a 0 , a 1 , . . . , a n −1 for the n th order Cheby-

hev polynomial P n ( x ). Finally, we sequentially construct the 1-D

olynomials { P i ( x )}. 

Consider a 2-D patch corresponding to a 2-D index set �x ×�y ,

here �x and �y respectively denote 1-D index set along x and y

xis, and the operator × is tensor product. Fig. 1 shows several

xamples about two-dimensional index set corresponding to the

ocal neighborhood. By solving ∑ 

x ∈ �x 

P i (x ) P n (x ) = 0 , i = 0 , . . . , n − 1 , 

∑ 

 ∈ �y 

Q j (y ) Q m 

(y ) = 0 , j = 0 , . . . , m − 1 , (6) 

e will sequentially obtain the 1-D Chebyshev polynomials

 P 0 (x ) , . . . , P n (x ) , . . . , P N−1 (x ) } and { Q 0 (y ) , . . . , Q m 

(y ) , . . . , Q M−1 (y ) }
n �x and �y respectively and the number of elements of �x and

y are N and M respectively. Then the 2-D orthogonal polynomials

an be derived from two sets of 1-D polynomials by taking tensor

roducts. Therefore, the polynomial set 

T n,m 

(x, y ) = P n (x ) Q m 

(y ) , n = 0 , . . . , N − 1 , 

m = 0 , . . . , M − 1 , 
(7) 

s the desired 2-D discrete orthogonal polynomials on �x ×�y . The

umber of the 2-D polynomials is N × M , which is the product of
he number of the two corresponding 1-D polynomials. It is easy

o prove the orthogonality of the 2-D polynomials when the 1-D

olynomials are orthogonal to each other. According to the orthog-

nality of { P n ( x )} and { Q m 

( y )}, we will have ∑ 

x ∈ �x 

P i (x ) P n (x ) = δi,n , 

∑ 

 ∈ �y 

Q j (y ) Q m 

(y ) = δ j,m 

, (8) 

here 

i,n = 

{
const., i = n, 

0 , i � = n, 
(9) 

s the Kronecker function. Considering the orthogonality of

 i , j ( x , y ) and T n , m 

( x , y ), we can have ∑ 

 ∈ �x 

∑ 

y ∈ �y 

T i, j (x, y ) T n,m 

(x, y ) 

= 

∑ 

x ∈ �x 

∑ 

y ∈ �y 

P i (x ) Q j (y ) P n (x ) Q m 

(y ) 

= 

∑ 

x ∈ �x 

P i (x ) P n (x ) 
∑ 

y ∈ �y 

Q j (y ) Q m 

(y ) 

= δi,n δ j,m 

, (10) 

here at least one of the right two terms will equal to 0 when n � = i

r m � = j , and thus the constructed 2-D polynomials are orthogonal

o each other. 

With regard to a 3 × 3 patch, the index set � is {−1 , 0 , 1 } ×
−1 , 0 , 1 } , and the 2-D discrete polynomial set T n , m 

( x , y ) is as fol-

ows 

T 0 , 0 = 1 , T 1 , 0 = x, T 0 , 1 = y, 

T 2 , 0 = x 2 − 2 / 3 , T 1 , 1 = xy, T 0 , 2 = y 2 − 2 / 3 , 

T 2 , 1 = 

(
x 2 − 2 / 3 

)
y, T 2 , 1 = 

(
y 2 − 2 / 3 

)
x, 

T 2 , 2 = 

(
x 2 − 2 / 3 

)(
y 2 − 2 / 3 

)
. 

(11) 

.2. Polynomial filters construction 

After obtaining the 2-D polynomials, we will exploit them as

he basis set for representing the underlying surface of an image.

enote the 2-D index set as �, and then for each ( x , y ) ∈ �, we can

ewrite Eq. (1) into the form 

 (x, y ) = 

N−1 ∑ 

n =0 

M−1 ∑ 

m =0 

c n,m 

T n,m 

(x, y ) , (12)

here the coefficients c n,m 

, (n = 0 , . . . , N − 1 , m = 0 , . . . , M − 1)

epresent the surface structure information to be recovered in a

ocal neighborhood. Let the observed data be f ( x , y ), which is the
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Fig. 2. Examples of 9 polynomial filters (weights) for local neighborhood of size 

3 × 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 The construction of the Chebyshev Polynomial filters 

(CPF) 

Input: The size of the local symmetrical neighborhood �, N × N; 

The index set (x, y ) ∈ �; 

Output: N 

2 polynomial filters of size N × N, w n,m 

, n, m = 

0 , 1 , · · · , N − 1 ; 

1: Define P 0 (x ) = 1 , Q 0 (y ) = 1 ; 

2: Construct the 1-D Chebyshev polynomials along x and y axis: 

3: for each P n (x ) , Q m 

(y ) , n, m ∈ [1 , N − 1] do 

4: 1) Compute a series of μp 
i 

and μq 
j 

according to Eq. (5), for 

i ∈ [0 , 2 n − 1] and j ∈ [0 , 2 m − 1] ; 

5: 2) Compute the coefficients of P n (x ) , Q m 

(y ) according to Eq. 

(4); 

6: 3) Obtain the P n (x ) , Q m 

(y ) by substituting the coefficients in 

2) into Eq. (2); 

7: end for 

8: Compute the 2-D orthogonal polynomials T n,m 

(x, y ) using 1-D 

polynomials P n (x ) and Q m 

(y ) according to Eq. (7); 

9: Calculate all the N 

2 polynomial filters w n , m 

using T n,m 

(x, y ) ac- 

cording to Eq. (15). 

c  

q  
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m  

a  

T  

t  

s  

9  

a  

n  

N  

p  

t  

m  

w  

p  

l  

m  

c  

o  

O

 

 

 

 

 

p  

a  

a  

f  

i  

o  

e  

s  

w  

p  

c  

a  
pixel intensity value in the position ( x , y ) of the local neighbor-

hood. To estimate the coefficients, we may minimize the total re-

construction error in the local neighborhood 

ε2 = 

∑ 

(x,y ) ∈ �
[ f (x, y ) − s (x, y ) ] 

2 

= 

∑ 

(x,y ) ∈ �

[ 

f (x, y ) −
N−1 ∑ 

n =0 

M−1 ∑ 

m =0 

c n,m 

T n,m 

(x, y ) 

] 2 

. (13)

Setting the derivatives of the above objective with respect to c n , m 

to zero, we obtain for each index ( x , y ) ∈ �

c n,m 

= 

∑ 

(x,y ) ∈ �
w n,m 

(x, y ) f (x, y ) = w 

T 
n,m 

f , (14)

where 

w n,m 

(x, y ) = 

T n,m 

(x, y ) ∑ 

(x,y ) ∈ � T 2 n,m 

(x, y ) 
(15)

is just an approximate normalization of an evaluation of the poly-

nomial T n , m 

at the index ( x , y ), w n,m 

∈ R 

NM×1 and f ∈ R 

NM×1

are the vector notation of the weights { w n,m 

(x, y ) , (x, y ) ∈ �} and

patch { f ( x , y ), ( x , y ) ∈ �} respectively. Fig. 2 shows the weights

{ w n,m 

(x, y ) , (x, y ) ∈ �} corresponding to Eq. (11) for a 3 × 3 patch.

Eq. (14) implies the fitting coefficient c n , m 

can be computed as the

linear combination of the pixel intensity values, and in vector form,

c n , m 

can also be considered as the inner product of patch vector

f and weights vector w n, m 

. If we consider Eq. (14) from an im-

age filtering perspective, the surface fitting coefficient c n , m 

can be

computed as the filter response of the mask vector w n , m 

filtering

over the image patch f . By rearranging the vector w n , m 

into ma-

trix from, we will obtain the desired filters or masks. We name

the weights w n , m 

in vector or matrix form as Chebyshev polyno-

mial filter (CPF), from which we could capture the underlying sur-

face structure information. Regarding to a patch of N × M pixels,

we can obtain N × M filters w n , m 

for each polynomial basis T n , m 

. In

this paper, we only consider the symmetric square neighborhood,

i.e, we set N = M. The construction of polynomial filters is summa-

rized in Algorithm 1 . 

Fig. 3 shows the polynomial filters with different local neigh-

borhood of size 3 × 3, 5 × 5, 7 × 7. The filters shown in Fig. 3 are

arranged in square form, i.e, each row and column have N filters of

N × N size. As can be seen, the most left-upper filter in each poly-

nomial set is a mean filter, and the rest are gradient operator fil-

ters which are zero-mean due to the symmetric index set. It can be

observed that our polynomial filters can compute not only lower-

order derivatives but also higher-order derivative. Moreover, our

polynomial filters decompose an image into multiple frequencies

from coarse to fine. The lower frequency components are mainly
aptured by the left and upper filters, and most of the higher fre-

uency parts are reflected by the right and bottom filters. From

he view of the arrangement of filters, it is obvious that polyno-

ial filters are able to capture horizontal and vertical directions,

s well as the combinations of horizontal and vertical directions.

he filters lie in diagonal line can capture the symmetric struc-

ure of the image, and the two filters which are relevant to the

ymmetry of main diagonal can capture similar structure with just

0 ° rotation. As we know, the polynomial filter is a normalization

pproximation of the 2-D orthogonal polynomials, therefore poly-

omial filters are also orthogonal to each other in vector form. A

 × N patch vector lies in the space R 

N 2 ×1 and any given N × N

atch vector can be linearly represented using our proposed N 

2 or-

hogonal polynomial filters as the basis set. Therefore, the polyno-

ial filters can be considered as a set of complete orthogonal basis,

hich implies that the response of the filters is unique and com-

act. Polynomial filters can represent the space in corresponding

ocal neighborhood without losing significative and inherent infor-

ation. In summary, polynomial filters can achieve a powerful de-

omposition which could not only capture the details in multiple

rientations and scales, but also keep the discriminant information.

ur polynomial filters have the following characteristics: 

• The filters can reflect the underlying surface structure informa-

tion. 

• The first filter is a mean filter, and all the other filters are zero-

mean. 

• The filters are multi-frequency, multi-orientation, and symmet-

ric. 

• The filters are orthogonal to each other and complete, compact.

In [25] , the 2-D discrete Chebyshev polynomials were first pro-

osed and exploited to fit the underlying surface for digital im-

ge. We share the construction of the masks with the polynomials

nd surface fitting concept. But the subsequent processing is dif-

erent. They tried to recover the input image by further convolv-

ng the polynomials with the surface fitting coefficients which are

btained using the masks. Then they applied other operators for

dge detection. However we have discovered and systematically

ummarized the potential and characteristics of the masks which

e called chebyshev polynomial filters. We exploit the masks to

rovide a powerful decomposition of an input face image. The de-

omposition can transform the input image into a relatively stable

nd meaningful attributes domain, where we can make advantage
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Fig. 3. Examples of polynomial filters for local neighborhood of size (a) 3 × 3, (b) 5 × 5 and (c) 7 × 7. 
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f the different details in multiple frequencies, orientations and

cales. [25] mainly applies the polynomials and surface fitting for

mage enhancement or denoising while we make use of the pow-

rful decomposition and representation of the masks for face de-

criptor extraction. 

. Polynomial contrast binary patterns 

.1. Polynomial contrast binary patterns 

In this section, we will describe in detail our proposed polyno-

ial contrast binary patterns (PCBP). As shown in above section,

olynomial filters decompose a face image into multiple directions

rom coarser to finer scales. In the coarser scale the facial compo-

ents are well represented with strong edges, while in the finer

cale the details are mainly exhibited with weaker edges such as

urves and lines. As polynomial filters are a set of complete or-

hogonal basis, it is easy to see that if two patches are the same

or different), the polynomial responses of them will also be the

ame (or different). Two similar patches cannot produce the same

lter responses. Therefore, response of polynomial filters can keep

nter-personal variations but is not robust enough to variations in

ntra-personal face images. 

As we know, the quantified binary encoding scheme of LBP

an reduce the intra-personal distance caused by local variations.

herefore we attempt to incorporate quantified binary encoding

nd polynomial filter responses to keep the inter-personal dis-

ance and reduce the intra-personal distance. LBP encodes each

ixel in a self-similarity manner with eight binary bits by quan-

ifying the difference of pixel intensity between the central pixel

nd its neighbors. LBP measures the local neighborhood difference

owards only central pixel, which may fail to take advantage of

ray-scale dependent information and reduce the intra-personal

istance. Moreover, using only central pixel intensity as threshold

or quantification may be sensitive to noise. Therefore, we propose

o exploit background intensity contrast information for extracting

ocal neighborhood relationship on polynomial filter responses to

nhance the accuracy. We name the resulting feature sets as the

olynomial contrast binary patterns (PCBP). Denote C n , m 

as the re-

ponse map of polynomial filter w n , m 

over the input face image.

ormally, our PCBP could be described as follows: 

 CBP n,m 

(x c , y c ) = 

7 ∑ 

p=0 

2 

n s 
(
C p n,m 

(x c , y c ) − μn,m 

(x c , y c ) 
)
, (16)

n which ( x c , y c ) is the location of the central pixel, and m , n is the

ndex of polynomial filter response. C 
p 
n,m 

(x c , y c ) is the intensity of

he central pixel and its p th neighbor, μn , m 

( x c , y c ) represents the
veraged background intensity for each polynomial attribute 

n,m 

(x c , y c ) = 

1 

| Nr(x c , y c ) | 
∑ 

(x,y ) ∈ Nr(x c ,y c ) 

C n,m 

(x, y ) , (17)

here Nr ( x c , y c ) denotes the local neighborhood centered at pixel

 x c , y c ) and | Nr ( x c , y c )| is the number of the pixels of the local

eighborhood. Moreover, s ( u ) is a non-linear mapping function 

 ( u ) = 

{
1 , u ≥ 0 , 

0 , u < 0 . 
(18) 

e then apply uniform pattern scheme to further encode these

atterns. Fig. 4 demonstrates the filter responses and their PCBP

ncoded maps for an input image and given polynomial filters. We

an see that the responses echo the filters very well. For example,

he filters in the first row are designed to extract basic vertical tex-

ures and the corresponding responses reflect the filters’ excellent

bility to capture the expected texture information. Because the fil-

ers are multiscale and multidirectional, the responses shown in

ig. 4 (c) are able to capture very rich texture information, which

nsures our features’ performance. As we know, face representa-

ion by the spatial histogram can encode both texture and struc-

ure information, and handle well with partial variations. The spa-

ial histogram scheme is then exploited to provide a more reliable

escription. The scheme firstly divides PCBP maps into several non-

verlapping blocks, then computes a histogram within each block,

nd concatenating the histograms of each block into a joint his-

ogram vector for the face representation. The framework of face

epresentation based on PCBP is illustrated in Fig. 5 . The difference

etween PCBP, LGBP and LBP is kinds of filters. As the filters be-

ome complicated, the method is more time-consuming. 

.2. Weighted polynomial contrast binary patterns 

The decomposition using polynomial filters can capture rich in-

ormation at multiple scales, orientations, and frequencies. It is

easonable to assume that different polynomial response maps

wn different discriminative powers and should make unequal

ontribution to the performance of face recognition. Thus different

eights should be assigned to the polynomial response maps. We

dopt the Fisher separation criterion (FSC) [19,27] to evaluate the

iscriminative significance of different polynomial response maps

s the weights. 

First denote S ( · , · ) as the similarity measure, such as cosine

istance. And F n , m 

is used to denote the PCBP feature vector for

he response maps of the polynomial filter w n , m 

. Let the num-

er of the subjects in the training set be C . Then for the ( n , m )th

olynomial maps, we can compute the mean and variance of the

ntra-class similarities, respectively denoted as m 

n,m 

I 
and σ n,m 

I 
, as
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Fig. 4. (a) An input face image; (b) 49 polynomial filters of size 7 × 7; (c) The responses of (a) using the polynomial filters in (b); (d) The polynomial contrast binary patterns 

(PCBP) encoded maps corresponding to (c). 

Fig. 5. The four stage flow-chart of the PBP-based face representation and recognition method. For each gallery and probe face image, we apply the polynomial filters, 

extract polynomial contrast binary patterns, divide them into blocks and concatenate histograms within blocks into a feature vector for face representation. Finally, the 

nearest neighborhood classifier is used to measure the sample similarity. 
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follows: 

m 

n,m 

I 
= 

1 

C 

C ∑ 

i =1 

2 

N i (N i − 1) 

N i ∑ 

k =2 

k −1 ∑ 

j=1 

S(F n,m 

i, j 
, F n,m 

i,k 
) , (19)

σ n,m 

I 
= 

⎛ 

⎜ ⎜ ⎝ 

2 (
C ∑ 

i =1 

N i (N i − 1) 

)
− 2 

×
C ∑ 

i =1 

N i ∑ 

k =2 

k −1 ∑ 

j=1 

(
S(F n,m 

i, j 
, F n,m 

i,k 
) − m 

n,m 

I 

)2 

⎞ 

⎟ ⎟ ⎠ 

1 
2 

, (20)

where F n,m 

i, j 
denotes the histogram vector of the ( n , m )th polyno-

mial maps for the j th sample of the i th class, and N i is the sam-

ple number of the i th class in the training set. Likewise, we can

also compute the mean and variance of the extra-class similarities,
enoted as m 

l 
E 

and σ l 
E 
, as follows: 

 

n,m 

E 
= 

2 

C(C − 1) 

C−1 ∑ 

i =1 

C ∑ 

j= i +1 

1 

N i N j 

N i ∑ 

k =1 

N j ∑ 

m =1 

S(F n,m 

i,k 
, F n,m 

i,m 

) , (21)

n,m 

E 
= 

⎛ 

⎜ ⎜ ⎝ 

1 (
C−1 ∑ 

i =1 

C ∑ 

j= i +1 

N i N j 

)
− 1 

×
C−1 ∑ 

i =1 

C ∑ 

j= i +1 

N i ∑ 

k =1 

N j ∑ 

l=1 

(S(F n,m 

i,k 
, F n,m 

j,l 
) − m 

n,m 

E 
) 2 

⎞ 

⎟ ⎟ ⎠ 

1 
2 

. (22)

Finally, we can compute the weight for the ( n , m )th polynomial

aps, denoted as ω 

n , m , based on the Fisher criterion [27] as fol-

ows: 

 

n,m = 

(m 

n,m 

I 
− m 

n,m 

E 
) 2 

(σ n,m ) 2 + (σ n,m ) 2 
. (23)



Z. Xu et al. / Neurocomputing 355 (2019) 1–12 7 

T  

m  

c  

n  

b  

i  

f  

s

S

 

o  

P  

i  

t  

l  

a  

a  

w  

l  

m

 

i  

p  

c  

s  

t  

e  

t  

o  

t  

a

4

 

e  

l  

u  

d  

i  

p  

a

 

8  

n  

f  

c  

c

4

 

a  

s  

v  

a  

s  

s  

t  

o  

d  

m  

a  

Fig. 6. Sample face images in FERET face database, and the images in each row 

correspond to the same subject. 

Fig. 7. The recognition rates versus the filter radius upon the FERET database. 

Fig. 8. The recognition rates versus block number upon the FERET database. 
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w  
he larger ω 

n , m implies the corresponding polynomial map holds

ore discriminative power. Therefore, our proposed WPCBP is

omposed of the weighted feature vector of PCBP for each poly-

omial response map. In other words, the weighting scheme can

e applied when we compute the similarity of two face images

n the testing phase. The similarity between the gallery and probe

ace images could be calculated as a weighted summation of the

imilarities between the corresponding feature vector: 

(F g , F p ) = 

N−1 ∑ 

n =0 

M−1 ∑ 

m =0 

ω 

n,m S(F n,m 

g , F n,m 

p ) . (24) 

We apply the weight learning scheme in two different ways. On

ne hand, the weights can be learned using the histogram vector of

CBP (using PCBP histogram as the F n , m in Eq. (24) ) and histogram

ntersection (HI) similarity [28] . As the dimensionality of the ob-

ained feature vectors is relatively high, we can employ the Fisher

inear discriminant (FLD) [4] to reduce the feature dimensionality

nd select features. The corresponding method with the weighting

nd feature selection scheme is called WPCBP + FLD(HI). Similarly,

e can also learn weights using the feature vector after feature se-

ection using FLD as the F n , m and cosine distance (CD) as similarity

easure. The corresponding method is named WPCBP + FLD(CD). 

The decomposition using polynomial filters can capture rich

nformation at multiple scales, orientations, and frequencies. Ap-

lying contrast patterns and the spatial histogram model to de-

omposed images can well capture the discriminative texture and

tructure information and make the face representation less sensi-

ive to the expression and pose variations and to small registration

rrors. The weighting scheme can further enhance the discrimina-

ive power of PCBP. In summary, these properties of PCBP allow

ur features to convey rich information of face images, to minimize

he intra-person variations caused by illumination, expression, and

ging, and to inherit their discriminative powers as well. 

. Experiments for face recognition 

Extensive experiments have been carried out to illustrate the

ffectiveness of the proposed method. In our experiments, two

arge publicly available face databases, FERET [29] , LFW [30] are

sed to evaluate the performance of different methods. These face

atabases contain face images with various appearance changes,

ncluding expression, illumination, aging, occlusion etc. The pro-

osed method has shown its robustness and accuracy in these vari-

tions. 

In our experiments, we divide the PCBP encoded maps into

 × 8 blocks, and adopt the uniform patterns with 59 bins. The

earest neighbor classifier is used throughout all experiments. For

eature sets after feature selection using FLD, only the most criti-

al 200 dimensions are retained for each polynomial maps and the

osine distance is adopted as the similarity measure. 

.1. Experiments on the FERET database 

The FERET database is widely used to evaluate face recognition

lgorithms. The basic gallery fa contains 1196 images of 1196

ubjects. There are four probe sets with different environment

ariations. The fb set contains 1195 images of 1195 subjects taken

t the same time as the gallery images but with different expres-

ions; the fc set includes 194 images of 194 subjects taken at the

ame time under significantly different illumination conditions;

he dup I set contains 722 images of 243 subjects taken between

ne minute and 1031 days after the gallery image was taken; the

up II set contains 234 images of 75 subjects taken at least 18

onths after the gallery image was taken. For our experiment,

ll images are aligned, cropped and resized to 128 × 128 with the
enters of the eyes located at (29,34) and (99,34). Some sample

ace images from FERET are demonstrated in Fig. 6 . 

We first evaluate 3 different filter radius (3,5,7) on FERET

atabase and set the parameters empirically. Fig. 7 plot the recog-

ition rates versus variant filter radius. It can seen that when ra-

ius is 7, the recognition rates are relatively higher. Increasing ra-

ius may help improve the accuracy but would also brings extra

ost both in time and storage. Setting radius as 7 may be a use-

ul trade-off for accuracy and computational cost. Therefore, in the

ollowing experiments we all use the 49 filters of 7 × 7. 

We also test different block sizes and FLD dimensions. Figs. 8

nd 9 show the recognition rates on FERET with different block

izes and FLD dimensions, respectively. It is clear that our setting

f parameters is the best choice. 

To better evaluate the effectiveness of our proposed method,

e compare our methods with other state-of-the-art methods
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Fig. 9. The recognition rates versus the FLD dimensions upon the FERET database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Recognition rates in percentage compared with the state-of-the-art 

methods tested with the FERET evaluation protocol. Avg denotes the 

average rate across the four probe sets. Note the results with ∗ are 

cited from their original papers. 

Methods fb fc dup I dup II Avg 

LBP [14] ∗ 97.0 79.0 66.0 64.0 82.7 

LGBP [18] ∗ 98.0 97.0 74.0 71.0 87.8 

HGPP [19] ∗ 97.5 99.5 79.5 77.8 90.2 

LLGP [31] ∗ 99.0 99.0 80.0 78.0 91.1 

high-dim LBP [32] 99.3 73.7 88.4 78.6 91.8 

DT-LBP [33] ∗ 99.0 100.0 84.0 80.0 92.6 

DLBP [34] ∗ 99.0 99.0 86.0 85.0 93.6 

Tan’s method [35] ∗ 98.0 98.0 90.0 85.0 94.2 

Zou’s method [36] ∗ 99.5 99.5 85.0 79.5 93.0 

LGBP + LGXP [20] ∗ 99.0 99.0 94.0 93.0 96.9 

POEM + WPCA [22] ∗ 99.6 99.5 88.8 85.0 94.8 

DFD + WPCA [23] ∗ 99.4 100.0 91.8 92.3 96.4 

CBFD + WPCA [24] ∗ 99.8 100.0 93.5 93.2 97.2 

GOM [37] ∗ 99.9 100.0 95.7 93.1 97.9 

PCBP + FLD 99.5 100.0 93.1 88.9 96.5 

WPCBP + FLD (CD) 99.5 100.0 94.0 91.9 97.1 

WPCBP + FLD (HI) 99.5 100.0 94.7 94.0 97.5 

t  

a  

a  

f  

c

 

P  

o  

t  

a  

r  

a  

c  

i  

c  

t

 

p  

F  

s  

c  

o  
reported in literatures. To obtain the results of high-dimensional

LBP [32] on FERET, we find 20 facial feature points based on the

method proposed in [38] , then extract LBP features from patches

centered at the feature points in multiscale images and finally

adopt PCA and FLD to select features. All the results are sum-

marized in Table 1 . As can be seen, PCBP + FLD with no weight-

ing processing performs better than most of the methods, which

demonstrates the effectiveness of our proposed PCBP algorithm.

Moreover, the weighting scheme can further improve the perfor-

mance. The weighting versions WPCBP + FLD (CD) and WPCBP + FLD

(HI) achieve higher recognition rates than PCBP + FLD, by mainly

improving the performance on the aging probe subsets Dup I and

Dup II. The proposed WPCBP + FLD (HI) can achieve the best face

recognition results on the fc and Dup II subsets, and compara-

ble results on the fb and Dup I subsets. In average WPCBP + FLD

(HI) performs very excellently with accuracy up to 97.5%, just 0.4%

lower than Gabor Ordinal Measures (GOM) [37] . GOM is an ap-

proach using ordinal measures to encode Gabor filtering responses.

It costs much computational time and space because it applies 8

ordinal filters to encode a total of 80 Gabor filtering responses to

binary codes. Different from GOM, our method does not focus on

complicated coding schemes and aims at searching for the novel

polynomial filters to capture facial textures better. In the end of

this subsection, we will present some experiments to compare our

polynomial filters with Gabor filters to further explain the differ-

ence between GOM and our PCBP. In Table 1 , we can also see that
Fig. 10. Face images and corresponding PCBP encoded images u
he high-dim LBP performs not so well on FERET. This is because

ll the images in FERET database are aligned and cropped properly

nd high-dim LBP’s advantage over pose variations by finding out

acial points is much reduced. In summary, our best result is much

ompetitive compared with the state-of-the-art methods. 

It can also be observed from Table 1 that, both non-weighted

BCP and weighted PCBP all achieve the best accuracy up to 100%

n fc subset, which demonstrates the effectiveness of our methods

owards illumination variations. We further display some face im-

ges under different illumination conditions along with their cor-

esponding PCBP encoded images in Fig. 10 . The PCBP encoded im-

ges are obtained using 49 Chebyshev polynomial filters of 7. As

an be seen, though the input face images are under quite different

llumination conditions, their corresponding PCBP encoded images

an extract the similar structure patterns and resist the illumina-

ion changes. 

Figs. 11 and 12 respectively show the weight values for the

olynomial filter maps in WPCBP + FLD(CD) and WPCBP + FLD(HI).

rom left to right every 7 bars correspond to the filters in the

ame row of Fig. 4 (b). It can be seen that the lower frequency

omponents hold the larger weights, which implies that they

wn stronger discriminative powers. The 7th filters of each row
nder different illumination conditions of FERET database. 
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Fig. 11. Weight values (estimated using cosine distance) for 49 polynomial filters 

in WPCBP + FLD(CD). 

Fig. 12. Weight values (estimated using histogram intersection) for 49 polynomial 

filters in WPCBP + FLD(HI). 
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Table 2 

Recognition rates in percentage compared with Gabor filters 

method and LBP tested with the FERET evaluation protocol. 

Methods fb fc dup I dup II Avg 

PCBP 94.8 98.5 78.5 73.5 88.0 

Gabor + CBP 94.6 93.3 69.7 61.1 83.5 

LBP [14] ∗ 97.0 79.0 66.0 64.0 82.7 
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7,14,21,28,35,42,49th filter) hold the smallest weights, and they

ainly capture the higher frequency parts. As we know, the noise

nd wrinkle textures occurred in aged faces which would reduce

he accuracy mainly in high-frequency bands. It is advantageous to

educe the significance of the higher-frequency bands by assigning

hem smaller weights. Therefore, the improvement on Dup I and

up II via weighting scheme is due to these two subsets reflect

he aging variation which brings many high-frequency components

ike wrinkle textures. 

To further demonstrate our polynomial filters’ effectiveness, we

ompare our method with Gabor filters-based method and LBP. We

se Gabor filters (8 directions in 5 scales) to process the images

nd encode the responses the same as our method did (the same

BP operations and the same histogram intersection as distance

etric). Table 2 shows the performance of the two filters on FERET.

ll the results here were obtained without FLD or any other feature

election method. From Table 2 we can obtain two conclusions.

irst, the methods combining filters and binary coding generally

erform better than simple LBP. Second, our polynomial filters are

ble to capture more useful information and perform better in face

ecognition than Gabor filters do. To analyze the reason of the re-

ults, we take out the responses of these filters and show an in-
tance in Fig. 13 . From the figure, both the two kinds of filters can

apture multiscale and multidirectional texture information, how-

ver our polynomial filters seem to be able to extract these tex-

ures finer than Gabor filters do. The textures represented by the

esponses of polynomial filters look more clear and regular than

hose of Gabor filters, which makes us believe that the polynomial

lters can enhance texture information better than Gabor filters.

hat’s why PCBP outperforms the Gabor-based method in this ex-

eriment. Considering the methods shown in Table 1 , we believe

hat it’s possible to improve our accuracy to exceed the perfor-

ance of Gabor-based GOM [37] through modifying other parts in

ecognition, such as the coding method and the classifier, which

ill be our future work. 

.2. Experiments on the LFW database 

To further demonstrate the effectiveness of our proposed

ethod, we carry out experiments for unconstrained face verifi-

ation task using the real-world Labeled Faces in the Wild (LFW)

atabase [30] . LFW database contains up to 13,233 face images of

749 subjects collected from the web including large variation in

ose, lighting, expression, age, etc. In our experiment, we exploit

he aligned version (LFW-a) of the faces as provided in [39] . Then

he aligned images are cropped and resized to 88 × 88 pixels. Some

ample face images from LFW are shown in Fig. 14 . 

According to the database protocol, the LFW database is divided

nto two “Views”: View 1 is designed for model selection and View

 is mainly for performance reporting and comparison. In our ex-

eriment, View 2 is used for performance evaluation and the View

 dataset is not used. View 2 provides 10 random splits to obtain

0 subsets. There are 30 0 intra-class pairs and 30 0 inter-class pairs

n each subset. The performance is reported using the 10-fold cross

alidation. We use 5400 pairs of images in the 9 subsets for the

onfiguration of matching threshold, and report the accuracy on

he remaining 10th subset. 

We follow unrestricted protocol (know identity information)

uring training. As we employ FLD as feature selection method, we

eed a training set for learning transform matrix. For each of the

0-fold cross-validation tests, we use identities with at least three

mages for training. We first pick out the identities with at least

hree images and for the identities owning larger than 10 images,

nly randomly chosen 10 images are used. The number of training

mages is about 4862. 

Then we make a comparison with the state-of-the-art methods

sing single and multi-descriptor representations under the unre-

tricted protocol. Fig. 15 and Table 3 are the comparison of our

ethod WPCBP + FLD (HI) with the state-of-the-art methods, eval-

ated in terms of the ROC curves and mean verification rates of

he 10-fold cross validation test, respectively. 

As shown in Fig. 15 and Table 3 , our method achieves the face

erification accuracy 92.85%, significantly outperforming most of

he state-of-the-art methods. Our method adopts a single feature

CBP as the face representation, and outperforms a number of

ethods with combined multiple-features [40–42] . The accuracy

f our method is only slightly less than two methods, The Fisher

ector faces (FVF) and the high-dim LBP. The Fisher vector faces
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Fig. 13. (a) An input face image; (b) The responses of (a) using the polynomial filters of size 7 × 7; (c) The responses of (a) using the Gabor filters of 8 directions in 5 scales. 

Fig. 14. Cropped sample face images in the LFW face database. The LFW database 

includes great variations in expression, illumination, occlusion, pose, etc. 

Fig. 15. Comparison of the ROC curves over View 2 on the LFW database between 

our method and other state-of-the-art techniques for face verification in the LFW- 

unrestricted setting. 

 

 

 

 

 

Table 3 

Comparison of classification accuracy ( ± standard er- 

ror) for our method and other state-of-the-art methods 

operating in the unrestricted setting. 

Methods Accuracy 

LDML-MkNN [40] 0.8750 ± 0.0040 

LBP multishot [41] 0.8517 ± 0.0061 

Combined multishot [41] 0.8950 ± 0.0051 

LBP PLDA [42] 0.8733 ± 0.0055 

Combined PLDA [42] 0.9007 ± 0.0051 

Combined Joint Bayesian [44] 0.9090 ± 0.0148 

Sub-SML [45] 0.9075 ± 0.0064 

VMRS [46] 0.9205 ± 0.0045 

Fisher vector faces [47] 0.9303 ± 0.0105 

high-dim LBP [32] 0.9318 ± 0.0107 

DeepFace [11] 0.9725 ± 0.0081 

DeepID [10] 0.9745 ± 0.0026 

LightCNN [43] 0.9883 ± 0.0083 

WPCBP + FLD (HI) 0.9285 ± 0.0094 
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(FVF) exploits the dense SIFT feature and Fisher Vectors (FVs) en-

coding, followed by a discriminative dimension-reduction with the

Joint Bayesian method. It uses a different alignment method from

the one we use. Moreover, it takes more computational cost with

the dense SIFT operator and sophisticated encoding algorithms.
he high-dim LBP proposes a rotated sparse regression technique

s the feature selection method. For LFW database, the high-dim

BP features are sampled around 27 landmarks in 5 scales which

ely on the sophisticated face landmark detectors. When facial im-

ges have pose variations, high-dim LBP perhaps performs better

han general features because it first preprocesses images with a

ace alignment algorithm. As [32] presents, if the face alignment

lgorithm is not very accurate or there are only few feature points,

he performance of high-dim LBP will degrade severely. To obtain

ery accurate feature points and to store very high dimensional

eatures, the high-dim LBP costs much more time and space for

he computations than PCBP does. Deep learning methods (DeepID

10] , DeepFace [11] , LightCNN [43] ) can achieve much better ac-

uracy than the other methods because they use huge amounts

f data to train a deep network. For example, DeepFace made use

f millions of images from other databases for training. Compared

ith deep learning methods, our method extracts local texture in-

ormation very directly using the proposed polynomial filters and

oes not need any training. In summary, the results in the unre-

tricted setting clearly confirm that our proposed methods can ob-

ain an effective and efficient face descriptor for real-world face

erification task. 
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. Conclusion 

We proposed a novel and effective face representation model,

amely polynomial contrast binary pattern (PCBP), which is based

n the polynomial filters. The effectiveness of PCBP comes from

everal aspects including the decomposition of polynomial filters

rom coarser to finer, local contrast binary coding, the spatial his-

ogram modeling. We also adopt the Fisher separation criterion to

earning weights for different polynomial filter maps. The weight-

ng scheme helps improve the performance when handling noise

nd aging variations. To further reduce the feature dimensionality,

e exploited FLD to select the most discriminative information. Ex-

erimental results on several publicly available databases have ev-

dently illustrated the effectiveness of the proposed method. Due

o its promising performance in the face recognition applications,

e can expect that the proposed method is a good choice for the

ecognition of other objects. 
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